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CHAPTER I. INTRODUCTION

§.1. THE SPECTRAL DECOMPOSITION PROBLEM,

In extending the spectral theory beyond the class of normal
operators, N. Dunford [Du.1958] gives a formal definition of the spectral
decomposition (reduction) problem, for a closed operator T acting on a
complex Banach space X. To interpret Dunford's definition, one has to
express X as a finite direct sum of invariant subspaces Xi’ such that the
spectra of the restrictions T[Xi be contained in some given closed sets.

For the class of spectral operators, the spectral decomposition
is accomplished with the help of a spectral measure E: a homomorphic map
of the o-algebra of the Borel sets of the complex plane { into the Boolean
algebra of the projection operators on X, with unit I = E(€). A spectral
measure, countably additive in the strong operator topology, is uniquely
determined by T (for unbounded spectral operators, see e.g. [Ba.1954]),
and is referred to as the resolution of the identity (or spectral resolu-
tion) of T.

A generalization of the spectral operator concept is due to
C. Foias [F0.1960], who replaced the role of the spectral measure by that
of the spectral distrnibution {for a full dress account of this theory see
[C.1968] and [C-Fo.1968]).

By making the spectral theory independent of such external
constraints as direct sum decomposition, spectral measure and spectral
distribution, we adopt the following

1.1. DEFINITION. Given a closed operator 7T : DT(C:X) + X,
a spectral decomposition of X by T is a finite system
{6 X)) c6x Inv T
satisfying the following conditions:

(1) {Gi} e cov o(T);

(2) X; < Dps if G; is relatively compact (Gi € GK);
(3) X = Zi Xs3

(4) c(TlXi)c: G} or, equivalently,

ofTIX;) € G;  for all i,



Special properties of the invariant subspaces Xi induce
special types of spectral decompositions. At center stage in this circle
of ideas is the concept of spectral decomposition property. In the spirit
of 1.1, we see that a spectral decomposition of X by T is formally
operated by amap E : G » Inv T, with the original family G providing the
sets C} to contain the spectra of the restrictions T]E(Gi) and the final
family Inv T supplying the summands Xi for the Tinear sum decomposition of
X. While we defer the definition and the study of the map E until we reach
Chapter IV, we indulge in a 1ittle discussion of our program.

In this work, we are primarily interested in extending the
general spectral decomposition problem to the case of unbounded closed
operators. When working with unbounded operators, the point at infinity of
the one-point compactified complex plane {_ assumes a special role. If T
is bounded then the resolvent operator is analytic at « and

R{=3T) = 1im R(2;T) = 0.
A
For unbounded T, R(+;T) has a singularity at « and, for some purpose, the
extended spectrum o_(T) = o(T) U {=} may be conveniently used. In many
cases, however, when working within the topology of £, we may still employ
the ordinary spectrum o(T) of an unbounded T.

The basic requirement imposed by any spectral theory is the
existence of proper invariant subspaces. A proper invariant subspace Y
under T may be a summand of the spectral decomposition. Also Y produces
the restriction T|Y and the coinduced operator T/Y on the quotient space
X/Y. Certain properties of T|Y and T/Y may characterize the invariant sub-
space Y. The general and some special properties of invariant subspaces
will be examined in terms of restriction and coinduced operators.

Some properties of bounded operators can be carried over to
the unbounded case. Thus, in a few instances, the bounded case techniques
can be adapted to unbounded operators. Most of the times, however, the
proofs concerning unbounded operators are intrinsically different.

Originally, the concept of decomposable operaton has been
defined and its theory developed for bounded operators on a Banach space
([F0.1963] and a wide variety of other papers). An extension of this con-
cept to the unbounded case [V.1969; 1971,2] as well as to operators on a
Fréchet space [V.1971] has been achieved by separating the part of the
spectrum on which T fajled to have the single valued extension propenrty.



The minimal closed subset S of Ow(T) on whose complement T has the single
valued extension property, in the sense that for any analytic function
f:olcS)+0p, (A-TIF(A) =0 on wNC implies f(A) =0 onw, is
called the spectral residuum of T. An open S-cover of o (T) has all but
one member GS disjoint from S. The pathology lurking in an S-cover is
brought out in the pertinent spectral decomposition, by the invariant sub-
space that corresponds to GS‘ The theory of these S- {or nesidually-)
decomposable operatorns gives an interesting insight into the structure of
some non-decomposable operators (e.g. [B.1975], [N.1979; 1979-1980; 19801,
[T.1983], [V.1969; 1971; 1971,a; 1982], [W.1984], [W-L1.19847).

To reach our targets, we shall follow a different path. The
key ingredient in our approach is the spectral decomposition property
[E-L.1978]. This property endows a closed operator with the single valued
extension property [E.1980,a] and in the light of some subsequent works
as [A.1979], [L.19811, [N.1978] and [Sh.1979], it gives a simpler and
more natural interpretation to the concept of bounded decomposable
operator. How much remains true if we drop the assumption of boundedness?
The answer will arise from the spectral manifold discernibly at work with
bounded and unbounded operators. What we loose is the property of the
spectral manifold to be {0} at the empty set and this fact distinguishes
between the operators with the spectral decomposition property which are
decomposable and which are not.

The substance of the spectral theory suggests that a certain
duality exists between an operator and its conjugate. It is a major topic
of this work to explore the spectral duality of unbounded closed operators.

The use of certain spectral constructs, such as {(pre-)
spectral capacity and (pre-) spectral resofvent simplifies certain proofs
and gives new characterizations to operators which possess some specific
spectral properties. The interplay between various spectral resolvents and
contingent properties of the operators will answer some questions and will
open new problems.

For a deeper analysis, we shall frequently use the contour
integnal of a vector-valued function. An open A C U is a Cauchy domain if
it has a finite number of components and its boundary T = 3A is a
positively oriented finite system of closed, mutually nonintersecting
rectifiable Jordan arcs. T will be referred to as an admissible contour.
If a Cauchy domain A is a neighborhood of a set SC [, we shall simply say



that A is a Cauchy neighbonhood of S. A set HC € is referred to as a
neighborhood of =, in symbols H e V_, if the closure of its complement HC
is compact in f. An open set « is a neighborhood of S U {«} if it is a
neighborhood of both S and «. Without loss of generality, we assume that

for Sc< £, any {Gi}?=0 € cov S has, at most, one unbounded set GO.

We denote by Ap the class of functions f : mf(C ) » € which
are locally analytic on a neighborhood we of Uw(T) and regular at «. For

fe AT’ we write f(») = lim f{X). For the use of the contour integral it
A+

will be implicitly assumed that p(T) # 0.

The functional calculus is established by the algebraic homo-
morphism f = f(T) between the algebra A; and the Banach algebra B(X) of
bounded Tinear operators which map X into X. If f e AT’ then

£(T) = f(=) + '2%"32 FOORMSTIAN,

where A is any Cauchy neighborhood of o_(T) with Z’ctmf. If f{o) = 0, the
range of f(T) is contained in ;.

It is an open question whether every bounded and unbounded
closed operator on a Banach space has a proper invariant subspace. In fact,
in terms of reducing subspaces, the unilateral shift operator on £2 is a
counterexample [H.1951], [H.1967]. The existence of proper invariant sub-
spaces for subnommal operatons was proved by S. Brown [Bro.1979], {see
also [St.1979]) and some extensions were obtained in [St.1980], [Ap.1980]
and [Ap.1981]. In defining the spectral decomposition property of the
given closed operator T, it will be assumed the existence of the necessary
number of invariant subspaces with the required spectral property (as
mentioned in the first paragraph of this section). The fact that we are
not working in void will become soon evident by the wealth of the spectral
maximal and T-bounded spectral maximal spaces, as constructive elements of
the spectral decomposition problem.



§.2. THE SINGLE VALUED EXTENSION PROPERTY

The spectral decomposition problem cannot bé properly studied
without the single valued extension property (SVEP). This property has a
profound effect on both the operators and the invariant subspaces involved
in a spectral decomposition.

2.1. DEFINITION. A linear operator T : DT(c:X) + X is said to
have the SVEP if, for every ana]ytig.function f: we > vT defined on an
open we < U, the condition (A-T)F(A) = 0 implies f(r) = 0.

Equivalently, for each x ¢ X, any two analytic functions

f we > DT’ g : mg - DT, satisfying condition

{(X-T)f(X) = (A-T)g(RA) = x on we N Ggs
agree on G i w_. When this property holds, the union of the domains We
of all DT-valued analytic functions f, which identically verify equation

(2.1) (A-T)F(X) = x,

is called the Local nesolvent set and is denoted by p(x,T). The SVEP
implies the existence of a (maximally extended) analytic function xT(-),
or x() if T is understood, referred to as Local nesclvent, which maps
o{x,T) into Dy and identically verifies (2.1). The Local spectrum o(x,T),
defined as the complement in € of o(x,T), is the set of singularities of
x(=).

If not specified otherwise, we shall henceforth assume that
the given T is a closed operaton.

2.2. THEQREM. Given T, for every x e X and 2
following assertions are equivalent:

o ¢ €, the

(I) there is a neighborhood & of Ag and an analytic function
f: 6> Dp verifying equation {2.1) on §;

(II) there are numbers M > 0, R > 0 and a sequence
{an}:=0 < Dy with the following properties:

(2.2) (a) (gTag=xs () (gTaq=as (c) [lal<m, nez.

PROOF. (I) => (II): We may assume that

§=1{x: [A-AOI < r} for some r > O.

Tthe term "analytic" will be indistinguishably used for "locally analytic”,



Let

(2.3) f()) = nZO an(xo-x)", Aes

8

be the power series expansion of f. By decreasing r, we may assume that
(2.3) holds on &. Then, for the radius r of 36, [[anrnH +0 asn »w,
Hence there is M > 0 such that

(2.4) fla ir"< M, nez’

For R=r"1, (2.4) implies (2.2,c). By making A = Ay in (2.1) and (2.3),
one obtains (2.2,a). Furthermore, it follows from {(2.3) that

_ 1 (1) +
a = -5/ d\, nelZ.
n 21 58 (AO-A)n+I

In view of (2.1), one can write

(xO-T)f(A) = (Ao-k)f(x) + (A-T)F(2) = (xo-x)f(x) + X.
Since T is closed, one obtains a, €0; (ne Z+) and
(0 -T) 1, Do)
- a Z - — —————————
O n+] 27\'1 36 ()\O_x)n'*'z
1 f{)) 1 X
= - =/ dx - S —>—=d\ =a_.
2 IPON (Ao_x)n+l ni 98 (xo-x)"+2 n

This proves {2.2,b).
(I1) = (I): In view of (2.2,c), the series (2.3) defines a function f,
analytic on
§ = {x : |Axg < RS,
Thus, for K
_ n
fk(x) = nzo an(xo-k) . A es, keN,

with the help of (2.2,a), one obtains
& n_ & n
(-mf () = nZO (A-Tha, (xp-2)" = nZO (rg-Tla, (xp-2)

k k k
+1 n n+}
- a - = x o+ a_ (a,-A)" - a_{A.-2)
nzo n"0 nz1 n-1'"0 nZO n*"o



- k+1
= x - a,(A)" .

For every X e §, fk(A) + f(A) and ak()\o-x)k+1 + 0, as k>, Since T

is closed, f(1) e D; and (A-T)F(A) = x, forall A e 6. [

2.3. COROLLARY. T does not have the SVEP iff there exists
AO € T and there are numbers M > 0, R> 0 and a sequence {an}i=0 C:DT
such that

{2.5) (AO-T)a0 = 0; (AO-T)a
some n.
PROOF. T does not have the SVEP iff, for some analytic function

f we > vT and AO € Wes there is a neighborhood & of XO such that

+
ntl = A IEWI <MR" (neZ); a, # 0 for

(2.6) (A-T)f(x) =0 and f(A) # 0 on s.

In view of 2.2, the situation described by (2.6) occurs iff conditions
(2.5) hold. [J

2.4. COROLLARY. T does not have the SVEP if there is XO el
such that XO-T is surjective but not injective.
PROOF. Assume that XO-T is surjective but not injective. Since XO-T
is closed, it follows from the open mapping theorem that there is R > 0
such that, for each y e X, there is x e DT satisfying conditions

(o-Tx =y, [Ixll <RIyl

Since =T s not injective, one can choose a, e Dy with[]aOH =1
and (XO-T)a0 = 0, For each n € N, let a, € DT satisfy conditions

(g2, = a, 1o llagll < Rlla, Il

Then (2.5) holds for M = 1 and hence T does not have the SVEP. [j

2.5. COROLLARY. Let T have the SVEP. Then A e o(T) iff
A-T s not surjective.

2.6. PROPOSITION. If T has the SVEP then the following pro-
perties hold:

(1) olxty,T) Colx,T) U oly,Ths X,y € X3

(11) ax{n) + by(r) = (ax+by)(r); a,be C; x,y e X;
Ae o(x,T)n ply,T)s



(I111) o(Ax,T) c o(x,T) for every A e B(X) which commutes
with T;

(IV) o(T%,T) colx,T) and (Tx)(2) = Tx(A), x e 0r,
A e p(x,T);

(V) o[x(x),T] = o(x,T); x e X, x e p(x,T);3

(VI) for any A e B(X) with the SVEP, o(x,A) = ¢ 1iff x = 0.
PROOF. Properties (I), (II), (III) and (VI) can be proved as in the

bounded case (e.g. [Du-S.1971; 1, XVI. 2.1, 2.2]).
(IV): It follows from
(A-T)x(A) = x, xe DT, X e o(x,T)
that Tx(}) e 123 and that Tx(+) 1s analytic on p{x,T). Then

(A-T)Tx(A) = T(A=T)x(X) = Tx
implies (IV).
(V): Given x e X, for every X e p(x,T), there is an analytic
function £y ¢ olx(r),T] -~ DT verifying equation
(2.7) (u-T)gy () = x(2) on p[x(1),T].
Since, for x e p(x,T), x{(A) € Or> (2.7) implies that Tgk(“) e Dy and

(-T) (-T2, (1) = (AT)(e-T)E, (1) = (A-TIx(A) = x.

Since (x-T)gA(u) = (X-u)EA(u) + x(x) 1is analytic on p[x{1),T], we have
v e p(x,T). Thus o(x,T) co[x{1),T].

Conversely, for A e p(x,T), define the analytic function
g, ¢ o(x,T) > X, by

- ——————X(”)uzxxm , ifu#As
9, (u) =
- x'(x), ifu=a,
For u # X, we have gx(u) ey and
(2.8) (u-Thgy (u) = - T + x(0) + 25 = x().

T being closed, by letting u > A, one has x'(A) e 21 and hence (2.8)
also holds for u = A. Consequently, o[x{1),T]< o{x,T) and (V) follows. []



2.7. PROPOSITION, If T has the SVEP, then

o(T) = U{o(x,T) : x e X}.
PROOF. Let A e € - U{o(x,T) : x e X}. For every x e X, (A-T)x(r) = x

implies that A-T is surjective. Then A & p(T), by 2.5. Consequently,
o(MY < U {o{x,T) : x € X}. The opposite inclusion is obvious. []

If T has the SVEP, then 2.6 implies that, for every Hc t,

(2.9) X(T,H) = {x e X : o{x,T) c H}

is a linear manifold in X. Moreover, if X(T,H) is closed then, by 2.6 {III)
and (IV), X(T,H) is a hyperinvariant subspace under T (i.e. X(T,H) is
invariant under every A e B(X) which commutes with T). The linear manifold
(2.9) is called a spectral manifold (of T).

The SVEP is stable under functional calculus and the proof
for an unbounded T follows by lines similar to that for a bounded operator
[C-F0.1967,1968].

2.8. PROPOSITION. Let T be such that p(T) # #. If T has the
SVEP then, for each f e AT, f(T) has the same property. Conversely, if
fe AT is nonconstant on every component of its domain and if f(T) has
the SVEP, then T has the SVEP.

The localized version of the spectral mapping theorem
[Ap.1968] or [Bar-Ka.1973] has its extension to unbounded operators as
given in [V.1982, IV. Theorem 3.12]. See also [Ho.1983,a].

2.9. PROPOSITION. Given T, let f e AT be nonconstant on every
component of its domain. Then, for every x e X,

olx,f(T)] = flo, (x,T)].

2.10. COROLLARY. Given T, let f e AT be nonconstant on every
component of its domain. If T has the SVEP then, for every set HC T,

(2.10) X[F(T),H]c X[T,f"_‘l (H)] < X[F(T),H U F({=})].
In particular, if f(~) € H, then
(2.11) X[F(T),H] = X[T, €71 (1)1,
PROOF. By 2.9, for every x e X[f(T),H], we have
flo(x, T}l ¢ o[x,f(T)JC H
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and hence o(x,T) C:f'](H). Thus x e X[T,f'1(H)] and the first inclusion
of (2.10) follows. Next, let x e X[T,f'](H)]. Then of{x,T)C f"](H) and
(2.9) implies

o[x,F(T)] = flo(x,T) 1< FLF T (H) U (=31 H U f(i=}).
Hence, the second inclusion of (2.10) is obtained. Now (2.11) is a direct
consequence of f{x) ¢ H and (2.10). [0

§.3. INVARIANT SUBSPACES. GENERAL PROPERTIES.

To develop the constructive elements of the spectral decompo-
sition of X, we devote this section to a spectral-theoretic study of in-
variant subspaces. A subspace Y of X is {nvariant under T, in symbols,
Yelnv T, if T(YN DT)C: Y. An invariant subspaEe Y produces two
operators: the restriction T|Y and the coinduced T = T/Y by T on the
quotient space X/Y. The latter has the domain

D2 = {x e X/Y : xNOp 7 B}

A

and, for ; € D?, X € ; N Dy, we define ?; = {Tx) .
3.1. PROPOSITION. Given T and Y € Inv T, consider the

following conditions:

(3.1) o(T) U ofT[Y) # €

(3.2) T=1T/V is closed on X/Y.

Then (3.1) implies {3.2) and either of them produces the following
inclusions

(3.3) o(T) < o(T) y o(T]¥);
o(TIY) € o(T) U o(T);

A

o(T) c o(T) U o(TlY).

PROOF. Assume (3.1) and let X e p{T) N o(T|Y) be arbitrary. For any
x e Y, we have R(A;T)x = R{A;T|Y)x € Y and hence Y is invariant under

~

Ry, = R{X\;T). Let Ry be the coinduced operator by Ry on X/Y. The identities

(A-T)RAX =X, x e X3 RX(X—T)X =X, X € DT
give rise to
(3.4) (A-T)Ryx = x, x e X/Y; Ry (A-T)x = x, x e 0?.

It follows from (3.4) that R, is the inverse of A-T. Since R, is bounded
and defined on X/Y, it is closed and hence T is closed. Furthermore, by



N

(3.4), X e p(?) and this implies (3.3). The remainder of the proof is
routine and we omit it. [J

3.2. PROPOSITION. Given T, let XO,X],Y e Inv T satisfy the
following conditions
(3.5) X = X0 + X], X]CZ 12 ny;

(3.6) o(T]XO) CcF, U(T[XO NY)cF,

for some closed F G €. Thgn ? = T/Y 1is closed. Moreover, if
T= (T[XO)/Y N Xo (i.e. T is the coinduced operator by T{X0 on XO/Y n XO),
then T and T are similar and hence

(3.7) o(T) = o(T).
PROOF. Since, by (3.6),
S(TIX) U o(TIY N X < F 7 €,

? is closed, by 3.1. Next, we show that T and T are similar. In view of
(3.5), each x ¢ DT has a representation

X = Xq + Xy with X; € Xi’ i=0,1.
Since Xy € Dy, we have Xq € Dy. Therefore, Xy € Yn 2% and
X € Xg N Dr. For xeX, let x=x+YeX/Y and, for Xg € XO’ Tet
Xg=Xg*Y n Xg € Xo/¥ N Xq- The spaces X/Y, XO/Y N X, are topologically
isomorphic. Let A : X/Y > XO/Y n XO’ with Ax = Xg» be the topological

0 € DT.

Conversely, for every X € D}, there is Xq € xOﬂ(X0 N DT) and hence

isomorphism. For every ; € D?, there is x e ; N DT with A; =X

; e Df. Consequently, AD? = D}. For each ; € D?, one obtains
ATx = ATx) = (Txg) = Tx, = ThAx.
Hence T and T are similar. Consequently, T is closed and (3.7) holds. [J
3.3. COROLLARY. Given T, let XO,X1 € Inv T be such that
X = X0 + X'l’ X.I CDT; o(T[XO) CF, cr(T]X0 n X]) CF,
for some closed F gim. Then T/X; is closed and
olT/X)) € o(T]Xg) U o(T[Xy N Xy).
PROOF. For Y = X1, the corollary is a direct consequence of 3.2. [J
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3.4, PROPOSITION. Given T, let XO,X1 e Inv T be such that
X = X0 + X'l’ X'I CDT.
Then T = T/X0 is bounded and
(3.8) o(T) colT[X)) Ua(TIXgN X;).
PROOF. Let x e X and put x

X + XO' It follows from

X = x0+x.|, Xq € XO’ X € X] cpT,
that X € ; n DT' Therefore, ;nDT # 0. Thus ; € D? and hence
D? = X/XO' Since tbe quotient spaces X/X0 and X]/X0 n X1 are topologically
isomorphic, T and TA= (T[XL)\/XO n X] are similar, by 3.2. Since, by 3.2,
T is closgd, so is T. Thus T is bounded, by the closed graph theorem. Since
c(?) = o(T), (3.8) follows from (3.3). ]

We recall that if T : DT(CX) +Y and A : DA(CY*) - X*
are adjoint to each other and one of them is densely defined, then the
other is closable (e.g. [Kat.1966, III.5. Theorem 5.28]). The following
proposition gives a condition for a coinduced T/Y to be closable on X/Y.

3.5. PROPOSITION. Let T be densely defined and et Y € Inv T
be such that Y n DT =Y., If T*]Ya is densely defined then T/Y is
closable. Moreover,

(T/Y)* = T*|Y®, (Y2 is the annihilator of Y in X*).

PROOF. The fact that Y2 e Inv T*, follows easily. Indeed, for
xeYnN DT and x* e Y3 N DT*’ we have 0 = <Tx,x*> = <x,T*x*>, Since
'Y_ﬁTT = Y, one obtains T*x* e Y2,

¥ can be viewed as the dual of X/Y, under the isometric iso-
morphism (X/Y)* » Y2, For convenience, we make no distinction between
Y3 and (X/Y)*, and denote by <;,x*> the Tinear functional x* e Y2 on
X/Y. For ; e DT/Y’ X € ; noT, yeY and x* e Ya(\ DT*’ one obtains

(3.9) ST/Y)x,x% = <(Tx) ,x*>

<TX + Y, x*> = <Tx,x*>
= <X T*x*> = <x+ y ,T*x*> = <;<,T*x*>.
Consequently, T/Y and T*]Ya are conjugate to each other and since T*| y2
is densely defined, T/Y is closable.
To prove the second statement, note that ﬁ.r = X dimplies that

ﬁT/Y = X/Y. Thus, T/Y is densely defined and hence the conjugate (T/Y)*
exists. If G(-) denotes the graph of an operator and VG(s) is the
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inverse graph (i.e. the mapping v : X x X > X x X is defined by
V(x,y) = (-y.x)), then it follows from (3.9) that
VG(T*[Y3) < 6(T/Y)2 = vG[(T/Y)*]
and hence (T/Y)* :DT*lYa. Now, let x* e D(T/Y)*‘ For x e DT and yeV,

(3.10) (T/Y)Rx*> = <x, (T/Y)Rxk> = <xty, (T/Y)*xts = <x, (T/Y)*x*>,

Thus, for every x* e D(T/Y)*’ <(T/Y);,x*> is a bounded linear functional
on Dy and hence x* e Dr,. Furthermore, x* € D(T/Y)*C Y2 and hence
x* e YN Dry. We have

(3.11) <(T/Y);,x*> = <Tx+y, x¥> = <TX,x*> = <x,T*x*,
It follows from (3.10) and (3.11) that (T/Y)*cC T*]Ya. O

3.6. PROPOSITION. Given T, Tet Y e Inv T. Then
(1) for any component G of p(T), either G c ofT]Y) or G cpe(T|Y);
(11) if Y C Dy, then each unbounded component of ¢(T) is contained in
o(TlY).
PROOF. (I). Suppose that we simultaneously have

o(TIY)N G# P and o(T]Y)NG # P.
Then 30{(T|Y)N G # ® and hence there is X e € such that
xeao(TIY)NG Coa(T]Y) C ca(T) < o(T).

This, however, is a contradiction.

(I1). Since YC Drs o{T|Y) is compact. If G is an unbounded
component of o(T) such that o(T|Y) (O G # @, then 3o(T|Y) N G # B. Now,
an argument similar to that used in the proof of (I), leads one to a
contradiction. [J

We proceed with some elementary but useful properties of a
closed operator acting on a direct sum decomposition of the underlying
Banach space.

3.7. LEMMA. Let X be the direct sum of two subspaces X1, X2,

X = X1G§X2
and let Ts ¢ 12 (< X1.) > X1. (i=1,2) be closed operators. The Tinear
i
operator T : DT(C X) > X, defined by

Dy {xeX:x-= Xp + Xpy Xy eDTi, i=1,2},

Tx = T]x] + T2x2, X € DT’
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is closed and
o(T) = o(T;) U o(T,).
PROOF. The proof is routine and is omitted. [J

The reducibility of an operator in terms of spectral sets is
now appropriate to be recorded. The theory is known (e.g. [Ta-La.1980,V.9.]).

3.8. THEOREM. Given T, if for closed disjoint sets 9ps 99 with

% compact, one has
ofT) = 0y U o4

then there exist XO,X] e Inv T satisfying the following conditions:

(1) X = x0®x1;

(11) X, < 0, c(T[Xi) = o5

3.9. COROLLARY, Given T, let Y e Inv T be such that o(T]Y)
is compact. Then, there exist T,W e Inv T with the following properties:

(i) Y =1®u;

(i1) TP, ofT|T) = o(T]Y), ofT|W) = p.

(i=0,1).

T)
PROOF. For oy = o(T|T), og =, 3.8 applied to TIY gives rise to (i)
and (i1). If A is a bounded Cauchy neighborhood of o(T|Y), the projection
(3.12) Q = e £ ROGTIY)cA

3A

produces T = QY and W= (IY - Q)Y, where Iy is the identity in Y. ]
3.10. LEMMA. Let X] and X2 be subspaces of X such that

(3.13) X = X1 + XZ'

There is a constant M > 0 such that, for every x € X there is a re-
presentation

(3.14) X =Xt Xy, Xg € X (i=1,2)

satisfying condition

(3.15) gl + 1hxo il < MITx]L

PROOF. Define the continuous map P : X](E)X2 + X, by
Py ®x,) = % + x5,
equipped with the norm

1 @xolt = 1 + 1, 1.
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P is surjective, by {3.13). By the open mapping theorem, there is a
constant M > 0 such that, for every x e X with (3.14), there exists

x1(-Dx2 e X, ®X,
satisfying conditions
Py = x and [lyll < M[lx].
Since [yl =]]x]H +][x2H , (3.15) is obtained. []
3.11. PROPOSITION. Let X1,X2 be subspaces of X satisfying
(3.13). If f : we > X is analytic on an open we © € then, for every

Ag € Ogs there is a neighborhood wo(c:wf) of Ao and there are analytic
functions f. : w. + Xi (i=1,2) such that

i 0
(3.16) f(a) = f1 )+ fzm on w,.
PROOF. Put
wplcag) = O : ]A-AOI < r} for some r >0
and let
(3.17) 2 a,02)",  falex,

be the power series expansion of f in Wye By decreasing r, we may assume
that
n
(3.18) sup, v [lap]l < .
By 3.10, for every n e Z+, there is a representation

(3.19) a, = ay ta,, A
with

(3.20) Ha]nﬂ +[[a2nH < Mlla, || for some constant M > 0.

€ Xi (i=1,2)

In view of (3.18) and (3.20), the series

8

(3.21) £,00) =

noo.
] ain(x-ko) , i=1,2

1~

0

converge and hence the functions fi are analytic on wg- Consequently,
(3.17), (3.19) and (3.21) give rise to (3.16). [



16

5.4, INVARIANT SUBSPACES. SPECIAL PROPERTIES.

The time has come to have a closer look at the invariant sub-
spaces which occur most frequently in spectral decompositions.

4.1, DEFINITION. Given T, Y € Inv T is said to be a v-space
of T if

ol(T]Y) < o(T).

A useful criterion for an invariant subspace to be a v-space,
with the proof [Sc.1959, Theorem 4] invariably valid in the unbounded
case, is expressed by

4.2. PROPOSITION. Given T with o{T) # P, YelInvT isa
v-space of T iff R{A;T)YCY for all A e p{T).

4.3, COROLLARY. Every hyperinvariant subspace under T is a
v-space of T.

PROOF. If o{T) = @, then every invariant subspace is a v-space of T.
Assume that p(T) # # and let Y be a hyperinvariant subspace. Since, for
each X e p(T), R(A;T) commutes with T, the hypothesis on Y implies that
R(A;T)Y < Y. Thus, Y is a v-space of T, by 4.2, []

4.4, COROLLARY. Given T, let Y be hyperinvariant under T and
suppose that o(T|Y) is compact. Then, the subspaces T and W, as
defined in 3.9, are hyperinvariant under T,

PROOF. Let A e B(X) commute with T. Then Y e Inv A and A]Y commutes
with T|Y. Moreover, for each A e p(T|Y), AlY commutes with R(X;T|Y) and
hence AlY commutes with the projection Q (3.12). Then T = QY and
W= (IY - Q)Y are invariant under A|Y. Thus, T and W are invariant under
A. [0

4.5, PROPOSITION. Let T have the SVEP and suppose that

Y;. If each Y; is a v-space of T, then ofT) =
1 i

><
n

e~

nes

1_ o(TIY,).

n
PROOF. The hypothesis on the Y.'s implies that o{T) D U c(T]Yi). The
i=]

opposite inclusion follows from 2.6 (I) and 2.7. [J

If the Y;'s are the summands of a (weak) spectral decomposition
of X by T, then T has a decomposable spectrum ([3.1977], [Ho.1982]).
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4.6. PROPOSITION, If T has the SVEP and Y e Inv T, then
oly,T)C oly,T]Y) for all yeV.
PROOF. Let y e Y. For every X e p(y,T]Y),
O-Thyr () = =TIV)ygy () = ¥
and hence p(y,T|Y)c o(y,T). O

4.7. DEFINITION. Let T have the SVEP. Then Y e Inv T is
said to be a u~-space of T if

oly,T) = o{y,TlY) for all ye V.
In viewof 4.6, Y e InvT is a u-space of T iff
(4.1) oly,T) o oly,TY) for all ye Y.

4.8. PROPOSITION. Let T have the SVEP. Then
(i)} each u-space of T is also a v-space of T;
(ii) Y ¢ Inv T is a u-space of T iff

{y(x) : x ep(y,T), ye YI CV.
PROOF. (i): Let Y be a u-space of T. With the help of 2.7, one obtains
ofT]Y) = U{a(y,T]Y) : ye Y} = U{o(y,T) : y e Y}
C U{o(x,T) : x € X} = o(T).
(ii): First, suppose that Y is a u-space of T. Then, for all ye Y
and X e o(y,T) = o{y,T|Y), one has
y(A) = y;(3) = yT[Y(k) e Y.

Conversely, if for all y e Y and X e o(y,T) we have
y(A) e Y, then
(A-TIV)y(A) = (A-T)y(A) = y

and hence p{y,T)< ply,T]Y). Thus Y is a u-space of T, by (4.1). [
4.9, PROPOSITION., Let T have the SVEP, Then Y ¢ Inv T is a

u-space of T iff, for every closed F,
(4.2) Y NX(T,F) = Y(T|Y,F).

For F closed, Y(T|Y,F) < Y nX(T,F), by 4.6. If Y is a u-space of T then,
for y e Y NX(T,F), one has o(y,T[Y) = o(y,T) ©F and hence
Y N X(T,F) S Y(T]Y,F).
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Conversely, assume that (4.2) holds and let y e Y. Denote
F =o(y,T) and obtain y e Y N X(T,F) = Y(T|Y,F). Therefore,
oly,TIY)CF = o{y,T) and hence Y is a u-space of T, by (4.1). [I

4.10. DEFINITION. Given T, Y e Inv T is called an analytically
{nvariant subspace under T if, for any analytic function f : we * DT, the
condition {A-T)f(A) e ¥ implies that f(A) e Y on an open we © t.

We write AI(T) for the family of analytically invariant sub-
spaces under T.

4.11. PROPOSITION. Every analytically invariant subspace Y
under T is a v-space of T. If, in addition T has the SVEP, then Y is a
u~-space of T.
PROOF. Let Y e AI{T) and y € Y. Since y = (A-T)R(A\;T)y e Y on p(T),
R{\;T)y € Y on p{T) and hence Y is a v-space of T, by 4.2. Moreover,
if T has the SVEP then, for ye Y and x e ply,T), (A-T)y(n) =y
implies that y{(X) € Y. Thus Y is a np-space of T, by 4.8 (ii). O

4.12. PROPOSITION. Given T, let Y e AI(T) be such that o(T|Y)
is compact. Then T e AI{T) and, if T has the SVEP then W e AI(T), where
T, W were defined by 3.9.

PROOF. Let f : We > DT be analytic and satisfy condition
(4.3) (A-T)f(X) € T on an open o ¢ L.

Since T CVY and Y e AI(T), (4.3) implies that f(A\) e Y on we. In view of

3.11, there are analytic functions fit w7, fz ¢t w~> W such that

(1) = f](k) + fg(k) on an open © ¢ w.
Since f{w) C9or and f, (W) Tc D, it follows that fz(m) C Dy. Then
(4.3) implies

(X-T)f](k) €T, X e w;
(4.4) (A-T)fz(k) =0, \ea.
Since o(T[W) = P, it follows from (4.4) that fz(x) = 0 and hence
f(x) = f](k) on w. Thus f{)) e T on wg» by analytic continuation. The
proof of the second assertion of the proposition is left to the reader. d

4.13. PROPOSITION. Given T e B(X), suppose that o(T) is no-

where dense and does not separate the plane. Then, every Y e Inv T is
analytically invariant under T.
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PROOF. Let f : we * X be analytic and satisfy condition
h{(x} = (A-T)f{X) e Y on an open we < €.

Without Toss of generality, we may assume that g is connected. Since o(T)
is nowhere dense, we Np(T) # B. Since o(T) does not separate the plane,
Y is a v-space of T. Then, for X e wg N e(T), 4.2 implies that
f(A) = R(A;T)h(r) e Y and hence f{(A) e Y on Ops by analytic continua-
tion. [J

Next, we extend a useful property [Fr.1973, Theorem 1] of
analytically invariant subspaces to unbounded closed operators.

4,14, PROPOSITION. Given T, let Y e Inv T be such that
YC ﬂT. Y is analytically invariant under T iff T = T/Y has the SVEP.

PROOF. First, assume that ? has the SVEP and let f : we > DT be
analytic and satisfy condition

(A-T)f(A) e Y on an open we € €.
By the natural homomorphism X = X/Y, we have
(A-T)F(A) = 0 on o.
By the SVEP, f(A) = 6 and hence f()A) e Y for all A e o
Conversely, assume that Y e AI(T). Let f : m; -+ D? be
analytic and satisfy condition
(4.5) (A-T)f(x) = 0 on an open w} < €.

Without Toss of generality, we assume that w; is connected. Let

o n
0 an(x-xo)

—$H>
—~
>
<
"

i t~1 8

be the power series expansion of % in a neighborhood & of XO € w;. For
each n, one can choose a e a  such that llanH ijlanﬂ + 1. Then
1/n

Tim sup, a [IV/" < Vim sup_ [fa [|V/7+ 1

and hence

fr) =

a, (\ag)" 0)
n

1~

0

is analytic on a neighborhood &' < § Cap of Ag- Since %(X) € D}, there

is h(r) e F(1)N 1. Then FO) = h(A) + Y& D, and hence
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() € fA) 0, for all X e 6'. Then (4.5) implies
{(A-T)F{X) e Y on &'
and by the hypgthesisAon Y, we have f(A) e Y on &'. Thus, ?(A) = 6 on
§' and hence f(A) = 0 on ©gs by analytic continuation. [J
The following lemma which appeared in [N.1981, Lemma 3.2] has

many useful applications.

. 4,15, LEMMA., Given T, let Ye Inv T wiEh Y 2 be such
that T =T/Y 1is closed in X/Y. Suppose that, for x e X/Y and zel_,
there is a neighborhood V of z and an analytic function a : V> v;
satisfying the following condition

(-T)g(A) = x  for AeVneC.
Then, there is another neighborhcod V' <V of z and an analytic function

heV > Dy such that E(A) = a(k) on V' and {A-T)h{r} is analytic on
V',

PROOF. Let D denote the Tinear manifold D; endowed with the graph norm
ITxflg =1l + 117l

T being closed, D is a Banach space and so is D/Y with respect to the

~

ID/Y of the quotient space. D/Y = DT can also be endowed

usual norm |[.
with the graph norm ]Ixﬂf = [Ix|] + | Tx|| and since T is closed, D/Y 1is a
Banach space with respect to the graph norm I[-H? . For any x e 07 and
all x e x, we have

X5 = (Xl + 17X = nf [[xtyl] + inf [ Tenwl] < Anf [[xy]
yeY weY yeY

+ ;g 1 Tx+Ty]| 3;/:5 eyl + IO Y = 11X /Y -

Since D/Y is complete under either norm ][-”? "['”D/Y’ it follows from
the open mapping theorem that the two norms are equivalent.
For A ¢ V1 T, we have

(4.5) To(h) = Ag(A) - x.

We examine the two possible cases: (a) z is finite and (b) z = w. In case
(a), we may assume that V< £. Then ?a(-) is analytic and hence a is
analytic on V under the norm II-H? or, equivalently, under the norm
”'I[D/Y' By [V.1971, Lemma 2.1], there is a neighborhood V' < V of 2
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and an analytic function h : V' - D such that a(k) = g(A) on V'. Since
V'CC and h is analytic under the norm |[+[[;, (A-T)h(2) is analytic on
V', In case (b), (4.6) rewritten as

742 - G0 -

>1% >

implies that g(=) = 0. Thus Ag{A)} is analytic and hence so is ?a(x) on V.

Consequently, a is analytic on V under the norm II'HD/Y' Since g{») = 0,
g admits the following power series expansion

(4.7) an) = y Qkx'k

in a neighborhood of =. Since (4.7) converges in the norm ”'IID/Y ,» We have
N k
IIak”D/Y < M" for some M > 0 and k e N.

Thus, there are a e a, such that [[akHTg_(M+1)k, k e N and hence
the series

h(x) = A
B 3, 2

-k

converges in a neighborhood V' of «, under the norm of D. Therefore, h is
analytic on V' under the norm of D and h(A) = g{A) on V'. Consequently,
Ah(x) is analytic on V' and so is Th{}x). [J

A4.16. PROPOSITION. Given T, let Y e Inv T with Yc DT be
such that T = T/Y 1s closed. Then, the following properties hold:
(i) If T has the SVEP and o(T|Y) N o(?) is nowhere dense in
C, then Y e AI(T);
{(ii) Let Z e Inv T be such that YCZ < Dr. Then Z/Y ¢ AI(?)
iff 7 e AI(T).

PROOF, (i): Let f : we > Dy be analytic such that (X-T)f(A) ¢ Y on an
open mfczﬁ. We may assume that wg is connected. On the quotient space X/Y
we have

(-T)F() = 0 on wp.

Ey 4.151there is an analytic function h : wh(C'mf) > DT such that
h(x) = f(x) and (A-T)h{n) is analytic on wpe Likewise wes wy, can be
assumed to be a connected open set.

First, suppose that op N o(TlY) # . The function
g e, N p(T]Y) » X, defined by g(r) = (A-T)h{r)}, is analytic and
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a(x) = (-DHh() = (-DFQ) =
jmplies that g{(A) e Y on op N e(T|Y). Then
(A-T)Ch(x) - R(A;T]Y)g(A)] =

and by the SVEP,
(4.8) h(x) = ROGT[Y)g(A) e Y on ©h N o(TlY).

Thus h{X) e Y on Wpys by analytic continuation. Since ?(A) and G(x) agree
on @y, f(A) - h(x) e Y on Op - In view of (4.8), f(A) e Y on wes by
analytic continuation.
Next, assume that @ c:o(TIY Since, by Dypotheiis,

@p f\D(T) # B, 1t fo1lows from (X-T) (x) = 0 that h(Xx) =0 on
Op (\p(T) Thus f( ) = 0 on e, by analytic continuation and hence
f(Ax) e Y on g

(ii). (Only if): Let f : we > DT be analytic and satisfy condition

(4.9) (A-T)f(A) e Z
on an open connected We < L. On the quotient space X/Y, there corresponds
(X-T) (A) € Z/Y on wee

Then, by hypothesis, f()) e Z/Y on we or, equivalently, f(A) e Z on Wee
Thus Z is analytically invariant under T.
(If): Let f : w; + X/Y be analytic and satisfy condition

(x-?)?(x) € Z/Y on an open connected w} C L.

Eix XO € m;. By an argument used in the second part of the proof of 4.14,

f can be Tifted to a DT-va1ued fEnction f, analytic on a neighborhood

© c:m;A of Ay such that f{A) e f(A) on w. Then (4.9) holds on w, f(A) e 2

on w, f(X) € Z/Y on w and hence f{x)eZ/Y on wf,by’ana1yt1c continuation.[]
4,17. DEFINITION. Given T, Y € Inv T is said to be T-absonbent

if, for any yeY and all i e o(T|Y),

(4.10) (A-T)x =
implies that x e Y.

4.18. PROPOSITION. Given T, each T-absorbent space is a
y-space of T.
PROOF. Let Y be a T-absorbent space and suppose that o{T|Y)ct o{T).
Then R{A;T)YQZY for some A e o(T) () o{T]Y) and hence not every solution
of (4.10) belongs to Y. This, however, contradicts the definition of Y. ]
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4.19. PROPOSITION. Given T, let Y be a T-absorbent space. In
the following two cases:
(1) op(T) = 8 .
(ii) T has the SVEP, Y Cp; and T =T/Y fis closed;
Y is analytically invariant under T.
PROOF. Let f : wg > DT be analytic and satisfy condition
(A-T)f(x) e Y on an open mfcﬁ.
Without loss of generality, we assume that w. is connected. If . colT|Y)
then f()x) € Y, by hypothesis. Therefore, assume that we N o(TIY) # 0.
Since
g(x) = (A-T)F(A) e Y on wen o(T]Y),
we have
(A-T)[F() - ROSTIY)g(A)] = 0 on we ne(T{Y).
In case (i),
f(A) = R(TIY)g(A) e Y on e N o(T]Y)

and hence f(d) e Y on Wes by analytic continuation.

In case (ii), use Lemma 4.15 to assert the existence of a
function h : O > DT, analytic on an open connected W, C @g such that
h(x) = f(A) and g{x) = (A-T)h(2) 1is analytic on Op+ On X/Y, we have

g(x) = (A-T)h(x) = (A-T)F(X) = 0

and hence g(A)eY on Wp Since Y is T-absorbent, h{A) e Y on wp N o(TlY).
For X e o, 0 o(T|Y), we have

(A-T)Ih(A) - R(A;TIY)g(M)] = 0.
R(x;T]Y)g(rA) being analytic on wp» the SVEP of T implies
h(x) = R(GTIY)g(A) e Y for X e ©p N o(TIY).

Thus h{3) € Y on all of wp, and hence ?(x) = ﬂ(k) =0 implies that
f(A) e Y on “p and f(A) eY on we, by analytic continuation. [

4,20, PROPOSITION. Let T have the SVEP and suppose that
X = Y1 + Y2.
If Y.I and Y2 are T-absorbent spaces, then

o(T[Y]IW Yo) < G(TlY1) n c(T]Yz).
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PROOF. Let y e Y1 n Y2 =Y be arbitrary. Then R(X;T)y e Y on p(T), by
4,2 and 4.18, For X e p(T]Y])TW p(T[YZ) = o(T), (where the equality follows
from 4.5), we have )

ROGTIY)y = [R(GTY Y Iy = R(AsT)y e Y.

Y2 being T-absorbent, for A e D(T|Y1) n c(T[Yz), (A-T)R(A;T[Yl)y =y
implies that R(A;T]Y])y € Y,. On the other hand, R(A;T[Y])y e Y1 and
hence R(A;T}Yl)y eV.

Thus, for all X e p(T|Y;), we have R(ATIY )y e Y. Now, 4.2
applied to Y e Inv TIY], gives ofTlY) c c(T[Y1). By symmetry,
o{T}Y) c:c(TIYz) and the assertion of the proposition follows. []

2

The property expressed by the foregoing theorem can be extended,
via induction, to any finite sum decomposition of X into T-absorbent sub-
spaces.

4.21. PROPOSITION. Given T, let Y € Inv T be T-absorbent
with o(T|Y) compact. Then T, as defined by 3.9, is T-absorbent.

PROOF. Let ye T, A e o(T|T) = o{(T|Y), and let x be a solution of
(4.11) (A-T)x = v.
Y being T-absorbent, x e Y. There is a representation

X = Xq + X with Xq € T, X € W.
By (4.11),
(A-T)xo =y, (A-T)x1 = 0,

and hence x; = 0, x = Xq € T. g

4,22. DEFINITION. Given T, Y e Inv T is said to be a spectral
maximal space of T if, for any Z e Inv T, the inclusion o(T|Z) < o(T]Y)
implies Z c V.

YeInv T with Y c-DT is called a T-bounded spectral maximal
space if conditions Z e InvT, Z <Dq, o(T|Z)c o(T]Y) imply Z V.

We denote by SM(T) and SMb(T) the family of spectral maxi-
mal spacesof T and the family of T-bounded spectral maximal spaces, res-
pectively. Clearly, if Y C Dr is a spectral maximal space of T then Y
is a T-bounded spectral maximal space. Conversely, however, not every T-
bounded spectral maximal space is a spectral maximal space of T. In fact,
ifYe SMb(T) and Z e Inv T is not contained in D, then o(T|Z) < o(T]Y)
need not imply Z < Y. For bounded operators, the two concepts coincide.
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4.23. PROPOSITION. Given T, every spectral maximal space of T
as well as every T-bounded spectral maximal space is hyperinvariant under T,

PROOF. We confine the proof to Y € SM(T), that of a T-bounded spectral
maximal space being similar. Let A e B(X) commute with T and choose
x» € C such that [r] > [lA]l. Then

R(GA) = 5 aMTan,
n=0
For every x e DT and k ¢ N, we have

k k
FA AN = (T AT,
n=0 n=0
T being closed, k + » implies that R{X\;A)x e ; and
(4.12) R{»;A)Tx = TR{X;A)x.

Thus R{x;A) commutes with T. Furthermore, the linear manifold
Yx = R(X;A)Y 1is closed and hence it is a subspace of X. Evidently,

(4.13) R(AANY N DT) cY, N 0.
If ye Yx N Drs then (A-A)y e YN O; and R{x;A)(x-A)y = y. Therefore,
(4.13) is an equality
(4.14) R(AANY N DT) =Y, N 05
Then, for y e YX(\ DT’ there is x e Y FIDT, such that y = R{X;A)x.
Thus (4.12) and (4.14) imply Ty = TR{XA;A)x = R(A;A)Tx e Y, and hence
Yx e Inv T. Moreover, it follows from (4.12) and (4.14) that

[ROGA)TT (TIY,ROGAX = (TIV)x, x e YN
Thus TIYX and T|Y are similar and hence
(4.15) o(T[Y,) = o(T|Y).
Since Y ¢ SM(T), (4.15) implies that Y, < Y. Consequently, for
Ial > |IAll, Y is invariant under R(X;A). It follows from

A = Tim A[AR(A;A) - 1],

Ao

that Y is invariant under A. [J

4.24. PROPOSITION. Given T, every spectral maximal space of T
and each T-bounded spectral maximal space is T-absorbent.



